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Abstract 
 

Cross-border container delivery time is determined by container flow rate between and through border-point 
nodes. For businesses to gain competitive advantagethere is need to shorten delivery time by increasing flow of 
containers through supply chain nodes. Container flow should be optimal to ensure proper resource utilization 
and profitability to players. This paper presents a multi-objective optimization of container flow through Dostyk 
and Alashankou, both of which form a critical node in China-Kazakhstan New Eurasian Land Bridge supply 
chains. The research used evolutionary multi-objective optimization approach to analyze data. Results show that 
there are cost savings and low demand dissatisfaction using IMEA optimization. Dostyk station showed higher 
demand dissatisfaction than Alashankou. The findings are important to policymakers and management in 
developing approaches that can optimize flow of containers at border points.  
 

Keywords: Optimization, Container flow, New Eurasian Land Bridge 
 

I. Introduction 
 

Effective utilization of the New Eurasian Land Bridge has potential to open new developmental horizons in 
Europe and Asian regions (Schiller Institute, 2001; Ilie, 2010). The nature and the level of use of railway 
infrastructure are correlated to its economic contributions to the countries it passes through (Tennenbaum, 2001). 
Moreover, carrying capacity utilization and container traffic flow is vital in railway transportation (Zhu, 2001). 
 

Since commodity delivery time is a critical factor in business, it is important to develop strategies to reduce it by 
improving inter-nodal and intra-nodal flow of containers (Emerson & Vinokurov, 2009). Supply chain nodes,like 
railway border-point stations of Kazakhstan’s Dostyk and China’s Alashankou, are found to be great contributors 
to longer delivery times (Sanhey, 2005) and therefore important in research addressing container flows. Supply 
chains depending on New Eurasian Land Bridge as a multi-nodal infrastructure are influenced by operational 
efficiencies and capacities of Dostyk-Alashankou border-point stations from which there is a dendrite of railway 
lines connecting the stations to Europe, Central Asia, South Asia and Russia (Junussova, 2006). Operational 
efficiencies and inefficiencies in addition to capacity of the stations have effects on intra-nodal container flow (Ye, 
et al., 2007) hence influence commodity delivery time. 
 

Some research has previously been done in the area of container flow (Development Research Centre, 2002; 
Pittman, 2002; Liu, 2003; Kie & Akhmet, 2009; Wu & Nash, 2000; Wan & Liu, 2009; Xiao, et al., 2003). Most of 
the research work dwelt on nodal and inter-nodal infrastructural development, cost factors, schedulingand 
efficiencies. Various optimization approaches have been applied to container transport problems but with limited 
success. Algorithmic methodshave been used but with difficulties (European Commission, 2006).  
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Computer simulation approaches have also been applied to optimize railway container transport with a focus on 
carrying capacity (Zhu, 2001). Some researchers used game theory to analyze railway track capacity allocation 
and container transport cost problems (Fragnelli, 2005; Gonzalez & Herrero, 2004; Norde et al., 2002). However, 
few researchers have focused on intra-nodal flow of containers especially with reference to border point railway 
stations or dry ports. 
 

The question of what causes delay of containers at border-points has not been adequately addressed. Optimal level 
of container flow through the two critical border-points of Dostyk and Alashankou is not clear since previous 
research has not objectively tackled the matter. Optimality and rationality of railway transport is considered an 
area of paramount importance for success of rail transport project like the New Eurasian Land Bridge (Altshuler, 
et al., 2012). 
 

This research addresses the gaps by using an evolutionary multi-objective optimization of container flow to 
analyze Dostyk-Alashankou node with an objective of establishing determinants of flow and obtaining time-
variant optimal levels using data between 2004 and 2012. Multi-objective approach is applied due to multi-
attribute nature of container flow ranging from flow volumes to time and cost factors; all of which need to be 
optimized. 
 

Section I of the paper presents introduction while Section II outlines literature review relevant to the 
research.Section III details the stepsin evolutionary multi-objective algorithm. Data and analysis are presented in 
Section IV followed by Section V which presents research findings andDiscussions. Implications of research 
findings are in Section VIwhile limitations and recommendations for further research are presented in Section VII. 
Summary and Conclusions are given in Section VIII. 
 

II. Literature Review 
 

A great deal of research has been done in the area of railway optimization. Survey approaches of optimization 
have been used by various researchers (Bussieck et al, 1997; Caprara, et al., 2005; Cordeau, et al., 1998; 
Desrosiers, et al., 1995). The research focused on major areas of optimization which include timetabling, 
platforming, unit shunting, line planning, rolling stock circulation and crew planning (Cacchiani, 2006) but was 
not specific to containers.  
 

Different timetabling approaches have been used to optimize railway container transport. Mistry and Kwan (2003) 
used algorithmic approach to study train timetables. Kroon, et al. (2005) studied periodic event scheduling 
problems using stochastic optimization. Evolutionary algorithm for timetabling was applied by Semet and 
Schoenauer (2005) to minimize delay. 
 

Platforming is concerned with decision of routes followed by scheduled trains on entering, stopping and exiting a 
station (Cacchiani, 2006). Billionnet (2003) applied integer programming to solve train platforming problems. 
Moreover, algorithms for solving platforming problems were developed (Caprara et al., 2006). Kroon et, al (2001) 
studied complexity issues in train routing through railway stations. De Luca and Mione (1998) used graph 
coloring approach to address platforming issues. 
 

Alfieri, et al (2006) used transition graph concept to study multiple roll stocks on single railway line. Focusing on 
Dutch trains, Fioole, et al (2006) obtained a description of convex hull of integer solutions to combining and 
splitting of trains. Maroti (2006) identified rolling stock planning problems and proposed models to describe them 
while Peeters and Kroon (2008) applied branch-and-price algorithm for determination of rolling stock circulation 
on train lines.   
 

Train unit shunting is the process of sorting items of rolling stock into complete train sets. Tomii et al (1999) used 
a probabilistic searches algorithm to study off-line shunting scheduling to solve train unit shunting problems but 
their research did not include disturbances. Sato, et al (2007) took account of the disturbances but left out train 
faults. Sugi, et al (2010) conducted an in-depth study of train shunting in the event of troubles with resources. 
 

A number of studies in line planning lines have considered lines to be of similar type (Bussieck, 1998; Claessens, 
et al, 1998; Goossens, et al, 2001). Oltrogge (1994) applied system split procedure to solve multiple line type 
problems involving different trains. Goossens, et al (2004) further developed the approach by using cost-
optimization line planning. 
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Many researchers have studied crew planning using various approaches (Balas & Carrera, 1990; Barnhart, et al, 
1994; Beasley, 1990; Bolc & Cytowski, 1992; Caprara, et al, 1999; Fisher & Kedia, 1990; Wedelin, 1995). Ernst, 
et al (2001) developed an integrated optimization model for crew scheduling and cyclic and non-cyclic crew 
rostering.  
 

Various multi-objective evolutionary algorithms have been developed to efficiently solve optimization problems 
especially in railway networks (Vrugt and Robinson 2007; Chen and Mahfouf 2006; Tan et al. 2001; Zitzler and 
Thiele 1999; Fonseca and Fleming 1995). Biologically inspired immunity-based is one of the algorithms (Timmis 
& Niel, 2000; Luh, et al., 2004). Keko, et al (2003) used vaccinated genetic algorithm with improved solution 
speeds and less susceptibility to parameter changes.  
 

This research applies immunized multi-objective evolutionary algorithm (IMEA) using clonal selection, somatic 
mutation and immune suppression approaches to optimize container flow through Dostyk-Alashankou border 
point. 
 

III. Immunized Multi-objective Evolutionary Algorithm 
 

Immunized multi-objective evolutionary algorithm is characterized by “distributed immune memory, 
reinforcement learning, self-regulation and diversity” (Wong, et al, 2010, p.741). Immune response becomes 
effective to antigen encounters due to memory linked to previous infection. Local memory stores cloned high 
affinity antibodies. Immunized evolutionary algorithm uses suppression, recruitment and crossover to regulate 
number of antibodies and diversify them (Wong, et al, 2010). 
 

Exploitation of optimal solutions is done using clonal selection (Deb, 2001). For two solutions x1 and x2, x1 
dominates x2if: 
 

1. Solution x1 is no worse than x2 in all objectives, and; 
2. Solution x1 is strictly better than x2in at least one objective. 

 

For constrained non-dominance of two antibodies a1 and a2, a1 dominates a2 if: 
 

a. Antibody a1 is feasible while a2 is infeasible; 
b. Both solutions are infeasible, a1 having less constraint violations; 
c. Both solutions are  infeasible and with equal number of constraints; 
d. Both solutions feasible, a1 dominates a2 as per basic definition. 

 

Diversification of optimal solution is done through the adoption of suppression characteristics. This research 
applies harmonic average distance to calculate diversity affinity (Huang, et al, 2006). 
Steps in immunized evolutionary algorithm are as follows: 
 

1. Initialization 
Random sets of solutions are generated initial population, IP; 

2. Activation 
The affinity values of the solutions are calculated. Non-dominated index of zero is assigned to every solution. 
The index remains unchanged if the solution dominates another and increases by 1 if it is dominated by others. 
The non-dominated index is the non-dominated affinity of the solution. 

3. Selection 
The whole population is sorted based on non-dominated affinity then on diversity affinity. Ranking is done 
using non-dominated affinity. After sorting, the initial population is divided into three groups: best 30% 
termed optimal affinity subset (OA); next 40% known as medium affinity subset (MA) and the rest as worst 
affinity subset (WA). 

4. Cloning 
Solution sets in OA are cloned for crossover and stored for subsequent iteration for searching global optimal. 
The cloned solutions are called (CL). 

5. Mutation 
Solutions in MA are taken through mutation at a rate of 1/n, where n is the number of variables in the 
solutions. Selected variable is multiplied by random numbers ranging from 0.8 to 1.2.The mutated subset is 
termed MU. 
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6. Population Suppression 

Solutions in worst affinity subset undergo suppression, while 10% of in the initial population with worst 
affinity values are discarded. The rest of the solution form suppression subset, SU. 

7. Recruitment 
Recruitment is done after population suppression to increase diversity in the population. The solutions are 
grouped as immune network subset, IN. 

8. Crossover 
Solutions in IN crossover with those in CL at a rate of 0.9; each IN solution is assigned with parent solution in 
CL. 
Given A as a set of the solutions in IN, B as that of the parents, and C as child set, with A(a1, a2,………..an), 
B(b1, b2,…….bn) and C(c1, c2……….cn): 
ci=ai          for    0≤ ji< 0.9;                                                                                     (1) 
ci=bi          for    0≤ ji< 1.                                                                                        (2) 
whereji is any random number from 0 to 1. 
The solutions obtained after having crossover are termed diversified subset, DI. 

9. Iteration 
The three resulting sets CL, MU and DI become the new population for next simulation. Steps 2 to 8 are 
repeated until termination conditions are satisfied. Termination conditions are set based on number of 
iterations, best affinity value or the standard deviation of affinity values in the best subset. When termination 
conditions are met, global optimal solution, GO, is obtained,  
MATLAB R2013a Version 8 will be used in this research for analysis because of its flexibility, dynamic 
functionality and efficiency (Hoffmeyr& Forrest, 2000). 
 

IV. Data and Analysis 
 

Container throughput as one of the measures of container flow is defined as average quantity of containers that 
can pass through a station or port on daily basis or that handled over a period of time (Military Dictionary, 2008). 
Figures 1 and 2 show container traffic data at Dostyk and Alashankou, between 2004 and 2012. 
 

Flow of containers is based on demand and supply constraints; the two determine container flow through each of 
the stations. Objective functions that represent container flow are given by: 
 

Cost function 
Minimize f1: Ctotal= ∑ ∑ ∑ |௏|(௜௝௞ܳ௜௝௞ܥ)

௞ୀଵ
|஽|
௝ୀଵ

|ௌ|
௜ୀଵ                                                                   (1) 

Dissatisfied demand function 
Minimize f2: Dtotal=∑ ௝ܦ

|஽|
௝ୀଵ         (2) 

 

Where, Cijk is the cost of transporting container through the border station from origin i∈ S to destination j ∈ D 
with station train service k ∈ V. Qijkis the quantity of containers supply location i to destination j through station 
train service k. Dj is the unit of dissatisfied demand at destination. Costs used in the analysis are that of 20 feet 
containers because data on other container sizes were limited. 
Objective functions are subject to both supply and train container capacity constraints as follows: 

 

Supply constraints 
The total quantity of containers through the border stations from ithlocation must not exceed maximum supply 
units Qi that the station can handle. 

∑ ∑ ܳ௜௝௞ ≤ ܳ௜
|௏|
௞ୀଵ

|஽|
௝ୀଵ    (3) 

 

Train capacity/space constraints 
The total quantity of containers by kthtrain service must be less or equal to the maximum available space/capacity 
the kth train service, Qk. 

∑ ∑ ܳ௜௝௞ ≤ ܳ௞
|஽|
௝ୀଵ

|ௌ|
௜ୀଵ        (4) 

 
Non-negativity constraints 

ܳ௜௝௞ ≥ 0andܳ௜௝௞ ∈  (5)   ܫ
MATLAB codes for the genetic algorithm are presented in Figures3 – 7 (see Appendices). 
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V. Findingsand Discussions 

 

Table 2 shows simulated results of 5 cases for Dostyk and Alashankou using Immunity-based Multi-objective 
evolutionary algorithm (IMEA) and that of current practice using AIS-based hybrid algorithm (HAIS).  Figures 8 
and 9 show percentage unsatisfied demand with respect to total cost of container flow through the two border 
stations. Simulations were done with population size of 50 and 1500 iterations.  
 

Results in Table 2 show that more optimal solutions can be obtained by IMEA compared to current practice using 
HAIS. The differences in costs between the two approaches also indicate that there is cost-saving when IMEA is 
used for optimization though unsatisfied demand is   approximately a fifth   of total demand ( in the range of 20 – 
22%) for both. Dostyk station showed higher levels of demand dissatisfaction than Alashankou. Higher optimal 
total costs were obtained for Alashankou than Dostyk, that is, for example, US$ 782,208,000 and US$ 
434,560,000 respectively in case 1(refer to Table 2, Figures 8 and 9). This higher total cost for Alashankou is 
possibly due to more containers handled at the station than at Dostyk (Figures 1 and 2). 
 

VI. Implications of Findings 
 

Findings of this research show that optimization using immunized multi-objective evolutionary algorithm is a 
viable approach that can help border station management and railway container transport companies to make 
decision and plan for more cost-effective container flow through them. 
 

VII. Limitations and Further Research 
 

This research considered flow of 20 feet containers due to inadequate data on other container sizes. The analysis 
did not explore different approaches to the processes of suppression and crossover that could result in 
improvement of convergence. Further research should be conducted to include containers of different sizes and to 
apply more efficient ways of improving convergence. 
 

VIII. Summary and Conclusion 
 

This paper aims to contribute to body of research in application of multi-objective evolutionary algorithms in the 
area of transport and logistics. It reviewed various optimization approaches applicable to railway border stations 
focusing on aspects like time-tabling, platforming, rolling stock circulation, train shunting, line planning and crew 
planning. Throughput and cost data for Dostyk and Alashankou were analyzed using IMEA using Matlab 
software. Results show that optimal container flow can be achieved using IMEA compared to current practice that 
is using HAIS approach. Further research is recommended in this area to explore ways of improving convergence 
and incorporate variety of container sizes in optimization. 
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Figure 1 Container traffic through DostykData Sources: Kaztranservice (KTS) and www.transbaltic.eu 
 

 
 

 
Figure 2 Container traffic through AlashankouData Source: www.transbaltic.eu 
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Figure 3Matlab code for Activation 
 

 
 

Figure 4Matlab code for selection 
 

 
 

Figure 5Matlab codes for cloning and mutation 
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Figure 6Matlab codes for recruitment and suppression 
 

 
 

Figure 7Matlab code for crossover 
 

Table 1Dostyk-Alashankou-Klaipeda rates for the year 2012 
 

Containers Rates (US $ per container) 
20 Feet Containers 3,200 
40 Feet Containers 4,800 
45 Feet Containers 5,760 

 

Source: www.suntrain.eu 
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Table 2 Simulated results of optimization using IMEA and current practice 

 

  DOSTYK ALASHANKOU   
 
 

CAS
E 

IMEA Total Cost 
(USD) 

Current 
Practice 

HAIS 

IMEA Total Cost 
(USD) 

Current 
Practice 

HAIS Total Cost (USD) 

 
% 

Dissatisfaction 

Total 
Cost 
(USD)  

% 
Dissatisfactio

n 
1 434,560,000.00 20.8 456,288,000 782,208,000.00 20.3 784,189,728 
2 414,915,200.00 21.1 435,660,960 925,205,760.00 20.9 971,466,048 
3 439,433,600.00 21 461,405,280 790,980,480.00 20.6 830,529,504 
4 350,271,360.00 21 367,784,928 746,847,360.00 20.2 821,318,400 
5 

547,360,000.00 
22.5 574,728,000 

985,248,000.00 
20.5 1034,510,40

0 
 

 
 

Figure 8 Simulation results for multi-objective container flow for Dostyk Case 1 
 

 
 

Figure 9 Simulation results for multi-objective container flow for Alashankou Case 1 
 

 


