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Abstract  
 

The estimation and usage of real-valued functions for forecasting is a central problem in applied statistics. There 
are several approaches to deal with such problem as the least-squares method, neural networks and the mixture 

of local experts model (MLEM). MLEM is built following four stages: (a) partition the input space into regions; 

(b) for each region train different models; (c) find the best model for each region (local expert); and (d) 
implement a composition of the local experts that will decide how to weight the local experts output. In this paper 

we integrate the parameters estimation for the partition of the input space and for training of the local experts, as 

a way to improve the performance of both the fitting of the models and their usage in forecasting. In order to 

illustrate the usefulness of the integrated approach, some applications to real datasets are shown. 
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1. Introduction 
 

The estimation of real-valued functions from a finite set of samples is a central problem in applied statistics. 

According to Cherkassky and Mulier (1998), in this research topic algorithms are sought to estimate an unknown 

mapping (dependence) between the system's inputs and outputs from known samples. Once such a dependency 
has been accurately estimated, it can be used for forecasting future system outputs from the known input values. 

Many different approaches to deal with this problem have been proposed, such as the least-squares method by 

Gauss, the least-absolute value method by Laplace, and more recently neural networks, support vector machines 
and the mixture of local expert models (MLEM). 
 

According to Pinto and Milioni (2005), a way of obtaining a better forecasts than would be provided by a single 

model is to construct a composite model from a combination of a number of different models. Each model is 
adopted at a given observation with a probability that depends on the values of the explanatory variable inputs for 

that observation. The logic behind the mixture of local experts model (MLEM) is that if a problem may be 

separated into smaller sub-problems, it might be easier to solve the sub-problems. The forecast accuracy is 
supposed to be improved through the combination of multiple individual estimates (Waterhouse, 1997). The 

general MLEM framework specifies that a forecast is made up of a series of forecasts from separate models, or 

experts, each of them weighted by a quantity determined by a so called gating function. 
 

The objective of MLEM is to explain the behavior of some phenomena, in which the structure of the mapping 

varies for different regions of the input space, i.e., taking into account the heterogeneity of the mapping structure 

into different regions of the input space. The use of MLEM allows combining many simple models, or experts, to 
generate a more powerful one. In this paper integrate the parameters estimation for the partition of the input space 

(clustering stage) and for the training of the local experts (expert assignment stage) as a way to improve the 

performance of both the fitting of the models and their usage for forecasting. The article is organized as follows: 

In the upcoming section 2 we describe MLEM focusing on the partition of the input space method and in the 
training stage. In section 3 we present the integrated model and in section 4 we illustrate the usage of the 

integrated model in forecasting using real datasets. Finally, in section 5 we suggest directions for further research. 
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2. Mixture of local experts model (MLEM) 
 

MLEM is an approach proposed by Jacobs et al. (1991). They suggest that it is better to attack a complex problem 
by dividing it into simpler problems whose solutions can be combined to yield a solution to the original complex 

problem (divide-and-conquer). According to these authors, MLEM is built following four stages: (a) partition the 

input space into regions or clusters; (b) for each cluster train all models; (c) find the best expert for each cluster; 
and (d) implement a composition of the local experts using a gating function, that will decide how to weight the 

local expert output for a given input point. 
 

2.1. Partition of the input space 
 

In order to execute the first stage of the MLEM procedure one can use any of the clustering algorithms available 

in the literature. According to Webb (2002), clustering analysis is the grouping of individuals of a population in 

order to discover structures in the data. Ideally, one would like the observations within a group to be close or 
similar to one another, but dissimilar from observations in other groups. 
 

Clustering is also used to check if natural grouping are present in the data. If groups do emerge, they may be 

identified and their properties summarized. One of the most used clustering algorithms is the k-means. The aim of 
this algorithm is to partition the data into k clusters so that the within-group sum of squares is minimized. 

According to Jordan and Jacobs (1993), one should be concerned about the statistical consequences of dividing 

the input space employing traditional clustering algorithms, since they generally tend to be variance-increasing 

algorithms. A solution to this problem is to utilize fuzzy clustering algorithms, allowing data to lie simultaneously 
in multiple regions. 
 

The fuzzy clustering problem may be stated as follows: given n observations in R
p
, assign each observation to 

each cluster with a certain degree of membership so that an objective function is minimized. According to Liu and 

Xie (1995) the fuzzy c-means is perhaps the most applicable fuzzy clustering algorithm. This method was initially 

developed by Dunn and later generalized by Bezdek (1981). The fuzzy c-means clustering algorithm attempts to 

cluster data vectors by searching for local minima of the objective function. 
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where Pic denotes the degree of membership of observation i (i=1,...,n) to the cluster c (c=1,...,k) and mcj  is the 

centroid of cluster c at the dimension j. In order to calculate Pic we can use different functions, as the softmax 
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where the decision variables are the centroids of the clusters (mcj). Thus, in order to generate the solution the 

algorithm moves the centroids over the input space to find the best position for them (the position that minimizes 
the objective function value). In order to generate non-spherical clusters, one can employ Gaussian Radial Basis 

Function (RBF), 
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where the decision variables are the centroids vectors (mc) and the parameters of c that are the pxp covariance 
matrix of the clusters (c=1,..,k). 
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2.2. Training phase 
 

During the calibration, or training phase, the process of composition of MLEM can be synthesized as follows: for 
each cluster a local expert is determined, as being the best fitted model to that cluster. It is a good practice to 

divide the data set into two sets, one for training and the other to validate the models. Thus, the best model for 

each cluster will be the one that performs best in the validating set. 
 

2.3. Composing the mixture of local experts model 
 

As mentioned before, the last step in the creation of MLEM is to combine the local experts using a gating 
function. The gating function is responsible for combining the forecast of each expert for a certain target in order 

to generate the overall forecast of the mixture model (Duda et al., 2001). 
 

The general architecture of the MLEM for a single output shall be written as 
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where i identifies a particular point of the dataset, k is the number of partitions of the input space (or, also, the 

number of local experts), gic is the weight factor for the expert c and defines how to weight that local expert, Ŷic is 
the forecast generated by the expert c and Ŷi is the forecast produced by MLEM. 
 

In order to determine gic, one could use the same function that performed the partition of the input space in the 

fuzzy clustering procedure. Thus, 

icic Pg   
 

where Pic denotes the degree of membership of observation i (i=1,...,n) to the cluster c (c=1,...,k). The great 

advantage of this procedure is that it uses a composition scheme considering the partition of the input space and 
the parameters (centroids of the clusters) already estimated. 
 

According to Pinto et al. (2004), although the MLEM constitutes a sophisticated technique, it does not necessarily 
lead to a more accurate estimates and make better forecasts. Moreover, depending on the criterion elected for 

evaluating the performance of the candidate models and the choice of the gating function, different experts may 

be chosen, yielding to distinct mixtures. 
 

3. Integrated mixture of local experts model (IMLEM) 
 

In the mixture of local experts model proposed by Jacobs et al. (1991) the partition of the input space, the training 
phase and the composition of the local experts are performed sequentially, in such a way that the results achieved 

in a certain step are adopted in the subsequent ones.  
 

There is a methodological problem associated with such approach, since each step of the procedure optimizes a 
different objective function. As such, different aspects of the data are ignored by the disjointed application of this 

sequential procedure. In order to overcome such problem, in this work, we integrate the parameters estimation for 

the partition of the input space and the training phase, in such a way that, simultaneously, the input space would 

be partitioned and that the best expert would be identified to improve the fitting and the forecasting performances. 
In order to integrate the parameters estimation for the partition of the input space and the training phase we 

employ a mathematical programming formulation where the decision variables are both the centroids of a fuzzy c-

means clustering procedure and the parameters of the experts being considered. The mathematical programming 
formulation is 
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where f(Xi)c is the functional form of the expert of cluster c (c=1,…,k), Xi are the model inputs, for point i 

(i=1,….,n) used to forecast the model output and to determine the membership degree (Pic) of the point i to each 

cluster c.  
 

This mathematical programming formulation can be classified as an unconstrained nonlinear programming 

problem since, due to construction,  


k

c icP
1

1.  
 

According to Bazaraa et al. (1993), many methods as any multidimensional search method, like the Levenberg-
Marquardt, or any method that use the conjugate directions, like the Quasi-Newton can be employed to solve 

unconstrained nonlinear programming problems. However, while any of these multidimensional search methods 

guarantee the attainment of a global optimum, but only a local one, it is suitable to use an evolutionary algorithm, 
as the evolution strategies (Beyer and Schwefer 2002), or a stochastic optimization algorithms, as the simulated 

annealing (Kirkpatrick et al. 1983), that are designed to search for the global optimum. 
 

According to Glover and Kochenberger (2003), metaheuristics are the preferred method over others optimization 
methods primarily when there is a need to find good solutions to complex optimization problems with many local 

optima and little inherent structure to guide the search. 
 

In the current work, an asynchronous team was employed for solving the proposed nonlinear optimization 
problem. An asynchronous team is a general computational structure where different algorithms are applied to 

solve the same optimization problem (Saito et al., 1999). The asynchronous team used in this work involves the 

combination of evolution strategies and the Quasi-Newton method so they can cooperate to produce much better 
results than they could if working alone. The algorithm is initiated by creating a trial solution. The evolution 

strategy agent first evaluates the objective function of the trial solution and creates newer solutions by mutation, 

generated according to a standard normal distribution. After a given number of mutations (in this work 1,000), the 

best solution is stored and the Quasi-Newton method is applied taking the best solution of the evolution strategies 
as starting solution. 
 

4. Empirical Evaluation 
 

In the following, for showing the performance of the employed model, compared to the global expert and the 

traditional MLEM, we applied them to different real datasets. In particular, in Section 4.1, we applied it to 
forecast the daily amount of money withdrawn from an automated teller machine (ATM) using time-series 

models. In Section 4.2, the MLEM with clustering optimization was applied to concrete compressive strength 

forecast and in Section 4.3 it was applied to forecast the fuel consumption in miles per gallon of automobiles 
using discrete and continuous attributes. 
 

In all cases, the databases were divided into a training set and a test set and the performance of the models was 

evaluated considering the statistics mean absolute percentage error (MAPE) and root mean squared error (RMSE) 
on both the training and test sets. 
 

4.1. Amount of money withdrawn forecasting 
 

Three forecasting models were applied to forecast the daily amount of money withdrawn from an automated teller 

machine (ATM) using time-series models as experts: the global expert, traditional MLEM and the proposed 

MLEM with clustering optimization. This kind of study is useful when one needs to optimize cash replenishment. 

The time series used in this application has 168 consecutive daily values (from Jan/21/2002 to Jul/07/2002). The 
first 158 points of the time series were used to build the model (training set) and the last 10 points were used only 

to test the models (test set). 
 

In order to select which lags would be considered in the time-series models, the auto-correlation (ACF) and the 

partial auto-correlation (PACF) functions were used. Figure 1 shows the ACF and PACF (lags 1 to 14) of the time 

series data. 
 

Figure 1 allow the identification of a stationary weekly seasonal pattern. Thus, a window size of seven points was 

used for all experts, that is, the points Yt-1, Yt-2, …, Yt-7 were used as model inputs in order to forecast the model 

output Yt capturing the weekly seasonal behavior. 
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Figure 1 – Autocorrelation (ACF) and partial autocorrelation (PACF) for the time series 

 

4.1.1. Global expert 
 

The first model developed was the global expert. The global model was obtained by applying the least squares 
loss function and only the autoregressive linear model as expert. Thus, the mathematical programming 

formulation for the global expert is 
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where j (j=0, t-1,…,t-7) are the decision variables of the problem (parameters to be estimated). Table 1 shows 

the training and test results for the performance indicators, achieved by the global expert. 
 

4.1.2. Mixture of local experts model (MLEM) 
 

In this application, the input space was the lagged observations Yt-1, Yt-4 and Yt-7 and the k-means method was 

used for the partition of the input space. 
 

A critical decision when using the k-means method is to decide the ideal number of clusters. According to Duda 

et al. (2001), when the number of clusters is unknown, we can compare the cluster criterion, i.e., the objective 
function of the mathematical programming problem, as a function of the number of clusters. If there is a large gap 

in the criterion values, it suggests a “natural” number of clusters. This procedure was used in this application to 

determine the ideal number of clusters. Figure 2 shows the cluster criterion value for different numbers of clusters 
(k). 
 

Figure 2 suggests that the ideal number of clusters is two, since there is a large gap between the solutions k = 1 

(all observations are in the same cluster) and k = 2 and the gap between the solution k=2 and the others is almost 
zero. 
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Figure 2 – Clustering criterion value for different numbers of clusters (k) 

 

 

The second step of the process is to find the local expert for each of the four partitions of the input space 
(clusters). Only the auto-regressive linear model was employed as the local expert. As done before, in order to 

select which lags would be considered in the time-series models, the auto-correlation (ACF) and the partial auto-

correlation (PACF) functions were used.  
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The last step is the development of the gating function that combines the forecasts produced by the local experts. 

In this application, the softmax function was used as the gating function. The obtained MLEM was 
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where 
*

jY  is the standardized value of Y in lag j (j= t-1, t-4 and t-7). Table 2 shows the training and test results for 

the performance indicators achieved by the MLEM. 
 

4.1.3. Integrated mixture of local experts model (IMLEM) 
 

To compare results the same MLEM configuration was used with two clusters and the softmax function as the 

gating function. The problem was solved using the asynchronous team described before (it was implemented in 
SAS 8.2 and took no longer than a few seconds to converge). The obtained IMLEM was 
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where 
*

jY  is the standardized value of Y in lag j (j= t-1, t-4 and t-7). Table 3 shows the training and test results for 

the performance indicators achieved by the IMLEM. 
 
 

Table 1 –Results for the performance indicators achieved by the global expert 

 Training set Test set 

MAPE (%) 15.3 14.5 

RMSE ($) 9,117 8,490 

 
Table 2 –Results for the performance indicators achieved by the global expert 

 Training set Test set 

MAPE (%) 14.2 13.2 

RMSE ($) 9,228 8,996 

 
Table 3 –Results for the performance indicators achieved by the IMLEM 

 Training set Test set 

MAPE (%) 13.3 12.1 

RMSE ($) 8,121 7,662 
 

 

In analyzing Tables 1, 2 and 3, it is possible to see that the IMLEM has the best performance on both the fitting 

(training set) and in forecasting (test set). The MAPE reduced from 15.3% to 13.3% in the training set and from 
14.5% to 12.1% in the test set and the RMSE reduced from $9,117 to $8,121 in the training set and from $8,490 

to $7,662 in the test set, when compared to the global expert.  
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When compared to the traditional MLEM, the MAPE reduced from 14.2% to 13.3% in the training set and from 

13.2% to 12.1% in the test set and the RMSE reduced from $9,228 to $8,121 in the training set and from $8,996 

to $7,662. 
 

4.2. Concrete Compressive Strength Forecasting 
 

The concrete compressive strength data set was taken from the UCI machine learning repository (Yeh, 1998). It 
contains 1,030 instances with 9 attributes (8 quantitative input variables, and 1 quantitative output variable). The 

data were randomly divided into the train (700 instances) and the test (330 instances) sets. 
 

4.2.1. Global expert 
 

As global expert, a principal component regression model was built in order to avoid multicollinearity. According 

to Khattree and Naik (2000), principal component regression seems to be an ideal method to use in the case of 

regression analysis with multicollinearity problem. The core idea behind principal component regression is to 
forego the last principal components, which explain only a small percentage of the total variability. Hence, in 

principal component regression, all the principal components of the independent variables are computed and the 

first few ones, say r (< p), are used as the transformed new independent variables in the model. The global expert 

was built taking the first 6 principal components (r=6). Table 4 shows the training and test results for the 
performance indicators, achieved by the global expert; and Figure 3 shows the forecasted values compared with 

the values actually observed for the training and test sets. 
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Figure 3 – Forecasted strength values of the global expert compared with the values actually observed (training 
and test sets) 
 

 

4.2.2. Mixture of local experts model (MLEM) 
 

In order to build the MLEM we used the same approach described and employed before. The softmax was used as 

gating function. The best MLEM was obtained by combining 3 experts. Table 5 shows the training and test results 
for the performance indicators achieved by the MLEM. 
 

4.2.3. Integrated mixture of local experts model (IMLEM) 
 

In this application, the softmax was used as gating function and the ideal number of partitions of the input space 

and, consequently, the number of local experts was determined testing different values for k. 

The mathematical programming formulation of the IMLEM becomes 
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where k is the number of clusters. Thus, the parameters to be estimated are the cluster centroids in R
6
, mcj (c = 

1,…,k; j=1,…,6), and the parameters of  the experts,c0 and cj (c=1,…,k; j=1,…,6). The problem was solved 

using the asynchronous team described before. Table 6 shows the training and test results for the performance 

indicators achieved by the IMLEM for different number of clusters. 
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Analyzing Table 6, it is possible to see that the indicators did not improve their performance when we increased 

the number of clusters. Thus, we can indicate that the ideal number of clusters is 2. Figure 4 shows the forecasted 

values compared with the values actually observed for the training and test sets for the IMLEM (k=2). 
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Figure 4 – Forecasted strength values of the IMLEM compared with the values actually observed 

 
 

Table 4 –Results for the performance indicators achieved by the global expert 

 Training set Test set 

MAPE (%) 30.8 32.4 

RMSE (Mpa) 10.17 10.91 
 

 

Table 5 –Results for the performance indicators achieved by the MLEM 

 Training set Test set 

MAPE (%) 27.6 29.6 

RMSE (Mpa) 10.05 10.55 
 

Table 6 –Results for the performance indicators achieved by the IMLEM for different number of clusters 
 

Number of 

clusters (k) 

Training set Test set 

MAPE (%) RMSE (Mpa) MAPE (%) RMSE (Mpa) 

2 16.7 6.47 16.7 6.87 

3 16.6 6.43 17.5 7.21 

4 16.4 6.38 17.7 7.32 
 

From Tables 4, 5 and 6, it is possible to see that using the IMLEM is the best fitted model (training set) and has 

the best performance in forecasting (test set). When compared to the global expert, the MAPE reduced from 

30.8% to 16.7% in the training set and from 32.4% to 16.7% in the test set. The RMSE reduced from 10.17 Mpa 
to 6.47 Mpa in the training set and from 10.91 Mpa to 6.87 Mpa in the test set. When compared to the traditional 

MLEM, the MAPE reduced from 27.6% to 16.7% in the training set and from 29.6% to 16.7% in the test set. The 

RMSE reduced from 10.05 Mpa to 6.47 Mpa in the training set and from 10.55 Mpa to 6.87 Mpa in the test set. 
 

4.3. Fuel consumption Forecasting 
 

The fuel consumption data set was also taken from the UCI machine learning repository. The data concern city-

cycle fuel consumption in miles per gallon, to be forecasted in terms of 2 multi-valued discrete (number of 
cylinders and model year) and 4 continuous attributes (displacement, horsepower, weight and acceleration). The 

392 instances were randomly divided into the train (249 instances) and the test (143 instances) sets. 
 

In order to build a multiple regression model as global and local experts, a variable selection procedure was 

applied. Thus, the global and local experts were built using just the weight of the car and the model year as 
independent variables. The MLEM was built using the same approach described and employed before. The best 

MLEM was obtained by combining 2 experts and the softmax was used as gating function.  
 

For the IMLEM, as done before, it was chosen to determine the ideal number of partitions of the input space and, 
consequently, the number of local experts testing different values for k. The problem was solved using the 

asynchronous team described before.  
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Table 7 shows the training and test results for the performance indicators achieved by the IMLEM for different 

number of clusters and by the global expert, since it can be considered an IMLEM with k=1, i.e., all the 

observations belongs to the same cluster. The analysis of Table 7 suggests that the ideal number of clusters is 2 

since the indicators did not improve their performance when we increased the number of clusters. Thus, the 
obtained forecasting model was 
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iŶ  is the forecasted city-cycle fuel consumption in miles per gallon of observation i, X1i is the weight of the car 

(divided by 100 due to scale problems) and X2i is the model year. 
 

In order to evaluate the employed approaches we calculated the performance indicators for both the training and 

the test sets. Table 8 shows the training and test results for the performance indicators, achieved by the MLEM 

and the IMLEM (k=2). 
 

Table 7 –Results for the performance indicators achieved by the IMLEM for different number of clusters 
 

Number of 

clusters (k) 

Training set Test set 

MAPE (%) RMSE (mpg) MAPE (%) RMSE (mpg) 

1 11.3 3.34 13.6 3.54 

2 8.7 2.97 10.3 2.96 

3 8.6 2.90 10.4 3.10 

4 8.6 2.85 10.5 3.04 
 

Table 8 –Results for the performance indicators achieved by the MLEM and the IMLEM 
 

 MLEM IMLEM (k=2) 

 Training set Test set Training set Test set 

MAPE (%) 9.3 11.7 8.7 10.3 

MSE (mpg) 3.24 3.32 2.97 2.96 
 
 

As it can be seen from Tables 7 and 8, the IMLEM is the best fitted model (training set) and has the best 

performance in forecasting (test set). When compared to the global expert, the MAPE reduced from 11.3% to 
8.7% in the training set and from 13.6% to 10.3% in the test set and the RMSE reduced from 3.34 mpg to 2.97 

mpg in the training set and from 3.54 mpg to 2.96 mpg in the test set. When compared to the MLEM, the MAPE 

reduced from 9.3% to 8.7% in the training set and from 11.7% to 10.3% in the test set and the RMSE reduced 

from 3.24 mpg to 2.97 mpg in the training set and from 3.32 mpg to 2.96 mpg in the test set. 
 

5. Conclusions and Directions for Further Research 
 

The estimation of real-valued functions from a finite set of samples has been used to deal with several practical 

problems. The Mixture of local experts model (MLEM) is a sophisticated technique that allows the combination 

of many simple models to build a more flexible and powerful one. According to Pinto and Milioni (2005), this 
flexibility promises improve the accuracy of the model, compared to a unique single model (global expert), but it 

requires a great number of hypotheses and choices to be made. 
 

In this work we integrated the parameters estimation for the partition of the input space (clustering stage) and for 

the determination of the local experts (expert assignment stage) when employing MLEM. The integrated model 

was used in an empirical evaluation where 3 real datasets were used to build forecasting models. In the empirical 
evaluation the IMLEM performed better than both the global expert and the traditional MLEM in both the fitting 

of the model and in its usage for forecasting, which indicates that it may be a good idea to use it instead of a 

single global model or the traditional MLEM. 
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As mentioned by Melo et al. (2007), when using any modeling technique, the benefits must be large enough to 
outweigh the costs. Therefore any improvement obtained by the application of the method proposed in this article 

should be weighted against the increased complexity and extra burden needed to implement the technique. 

For future research we intend to investigate the possibility of using the IMLEM in classification problems, as well 
as other clustering procedures, other partitioning of the input space methods and different strategies to combine 

the local experts model. 
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